Kodowanie podczas zajęć z matematyki łączy w sobie nabywanie wiedzy matematycznej z umiejętnością programowania. Jest to programowanie bez prądu (off) i aby przeprowadzić takie zajęcia, potrzebujemy np. kubków, maty lub kratownicy, kredek i długopisów. W tym artykule prezentuję kilka przykładów matematycznego kodowania z
Problem dyskalkulii, w odróżnieniu od dysleksji jest stosunkowo mało uświadomiony i zbadany, pomimo tego, że trudności w matematyce wcale nie są rzadkie wśród uczniów każdego typu szkół. Dysleksja rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych które mają specyficzny charakter tzw. wycinkowy, bez ograniczenia ogólnych zdolności poznawczych. Trudności te spowodowane są przez dysfunkcję pewnych obszarów mózgu. Dyskalkulia jest przejawem specyficznych trudności w uczeniu się matematyki a nie przejawem ogólnych trudności. Dziecko z trudnościami ogólnymi przejawia kłopoty mniej więcej na tym samym poziomie, potrzebuje więcej czasu na naukę. W testach inteligencji ma wyniki poniżej średniej. Trudności w nauce nie podlegają gwałtownym zmianom, są równomierne a w przypadku specyficznych trudności w uczeniu się podlegają wahaniom, czasami bardzo wyraźnym, uczeń potrafi być błyskotliwy a za chwile liczyć na palcach w celu wykonania prostego działania matematycznego. Uczeń taki charakteryzuje przeciętnym a często ponadprzeciętnym lub wysokim poziomem intelektualnym, równocześnie ma jednak trudności z pewnymi procesami myślowymi ( z procesami poznawczymi). Bardzo jasną i konkretną definicją jest zaproponowana w 2001r. przez brytyjski Department for Education and Skills określającą dyskalkulię jako: „Stan, który dotyka zdolności nabywania umiejętności arytmetycznych. Dyskalkuliczni uczniowie mają trudność z rozumieniem zwykłego pojęcia liczby, brakuje im naturalnego chwytania liczb, mają problemy z uczeniem się faktów liczbowych i procedur. Nawet jeśli wypracują poprawną odpowiedź lub zastosują właściwą metodę, to mogą to robić mechanicznie i bez pewności.” Uczeń z dyskalkulią:• Często wyobraża sobie liczby jako mgliste zbiorowości jedynek• Ma duże trudności z rozpoznaniem jakiejkolwiek struktury wewnętrznej w liczbach • Nie pamięta w jaki sposób liczby są zapisywane • Z trudem czyta liczby wielocyfrowe• Nie rozumie struktury dziesiętnej systemu liczbowego • Przejawia trudności z określeniem miejsca dziesiętnego liczby • Czytanie liczb wielocyfrowych sprawia im trudność• Czuje lęk przed matematyką • Wykonywanie działań nawet prostych wymaga bardzo wiele wysiłku• Często ponosi porażkę pomimo dużych chęci • W konsekwencji traci motywacje do nauki matematyki, czuje nie gorszy od innych uczniów, traci wiarę w swoje możliwości Oczywiście występowanie u dziecka /ucznia tych trudności, nawet kilku lub większości nie oznacza automatycznie, że dziecko ma dyskalkulie ale należy skierować swoje kroki do poradni psychologiczno - pedagogicznej w celu umówienia się na diagnozę, która będzie wnikliwymi wieloetapowym badaniem. Trudności związane z dyskalkulia rozwojową przejawiają się nie tylko w trudnościach ściśle związanych z dziedzina nauki jaką jest matematyka często są one połączone i bardzo silnie związane z:• Trudnościami z czytaniem i rozumieniem: - Dziecko ma trudność ze zrozumieniem języka matematycznego nawet jeśli bardzo dobrze czyta - Przy zadaniach bardzo długich, zapomina przed skończeniem czytania co było na początku - Pomyłki następują podczas odczytywania liczb podanie wyglądających np 3 i 8 oraz 6 i 9- Pomija przestrzenie pomiędzy liczbami 5 24 odczytuje jako 524- Trudność sprawia czytanie liczb wielocyfrowych np 45007, 1008, 8032- Ma trudność w rozpoznawaniu i stosowaniu odpowiednich symboli ( dodawania, odejmowania, mnożenia oraz dzielenia)- Ma problem z odczytywaniem map, danych z wykresów i tabeli• Trudności z pisaniem:- Błędnie kopiuje np. z tablicy liczby, figury geometryczne - Pisze symbole, liczby często zamieniając je i odwracając kolejność- Nie potrafi napisać z pamięci liczb, obliczeń czy figur geometrycznych - Ma trudność z poprawym zapisaniem liczby zawierającej więcej niż jedną cyfrę ( np zgubi zero pisząc dwa tysiące osiem jako 208, piętnaście zapisze jako 51)• Problem z rozumowaniem pojęć i symboli: - Trudność z rozumieniem symboli matematycznych - Problem z oceną miejsca dziesiętnego liczby - Problem z odczytywaniem danych z układu współrzędnych - Trudności z zapamiętaniem wzorów potrzebnych do obliczenia np. pola figury - Problem z rozumieniem pojęć związanych z wagą, przestrzenią, kierunkiem lub czasem- Problem z rozumieniem pojęć takich jak dużo, więcej i najwięcej - Trudność z powiązaniem terminów matematycznych z ich skórami np. Kilogram - kg- Problem z zastosowaniem matematyki w zadaniach z treścią• Problem z szeregowaniem liczb i faktami matematycznymi:- Trudności z szeregowaniem liczb ze względu wartość np czy 13 poprzedza 14, czy następuje po 14 - Problem z liczeniem wstecz np. Co cztery zaczynając od 100- Problem z sekwencjami liczbowymi, np czy 66 to więcej o to o 4 więcej od 71- Trudności z zapamiętaniem tabliczki mnożenia - Problem z obliczeniami pamięciowymi, które są spowodowane kłopotami z pamięcią krótkotrwała• Problem ze złożonym myśleniem:- Uczeń charakteryzuje się sztywnością w myśleniu czyli przejawia trudność w wybraniu właściwej strategii w rozwiązywaniu problemów i w zmianie strategii jeśli ta jest nieskuteczna - Problem z następstwem kolejnych działań matematycznych - Problem z oszacowaniem przybliżonych obliczeń - Trudności z planowaniem np. planowanie jak zadanie rozwiązać jeszcze przed przystąpieniem do obliczeń- Trudność z przechodzeniem z poziomu konkretów do poziomu abstrakcyjnego myślenia • Cechy ogólne charakterystyczne dla osób z dyskalkulią rozwojową:- Odczuwa lęk na samą myśl, że musi zająć się matematyką - Przejawia brak zaufania do własnych kompetencji matematycznych - Często rozwija strategie tzw. wyuczonej bezradności - Wolniej pracuje i popełnia więcej błędów przez co czuje się „gorszy” od innych uczniów w klasie - Oddaje prace niestaranne, pokreślone- Niechętnie pracuje w grupach - Ma niską samoocenęProblemy w nauce matematyki mogą mieć różne podłoże dlatego też dokonanie trafnej diagnozy jest niezwykle ważne i bardzo trudne ale niezwykle ważne dla dalszej edukacji matematycznej ucznia. Dobór testów do badania zależy od psychologa prowadzącego badanie w poradni psychologiczno - pedagogicznej do której udadzą się rodzice wraz z dzieckiem u którego podejrzewają tego typu trudności. Trzeba pamiętać, że ważne jest określenie możliwości ucznia a nie tylko poziomu osiągniętych wiedzy i umiejętności szkolnych w zakresie matematyki. Niepowodzenia w zakresie nauki matematyki mogą być spowodowane różnymi czynnikami. Diagnoza ma za zadanie określić czy problemy z nauce matematyki wynikają z dyskalkulii czy innych przyczyn, takich jak:• Zaległości szkolne które uniemożliwiają zrozumienie i realizacje kolejnych tematów • Problemów z czytaniem ze zrozumieniem • Problemy grafomotoryczne ( popełnianie błędów przy odczytywaniu zapisanych przez siebie działań i w związku z tym niemożność wykonania prawidłowych obliczeń)• Zaburzenia analizy i syntezy wzrokowej ( utrudniają np. naukę geometrii)• Niska odporność na stres• Problemy z koncentracja uwagi• Problem z pamięcią długoterminowąNiektórzy uczniowie mogą przejawiać wyżej wymienione trudności jako współwystępujące z dyskalkulią, ale mogą też występować niezależnie od niej. W tym przypadku uczeń powinien pracować nad poprawą zaburzonych stref i nadrabiać w ten sposób zaległości szkolne. Psycholog podczas badania powinien zebrać dodatkowe informacje o uczniu i jego trudnościach, aby prawidłowo rozpoznać przyczyny problemów szkolnych. Dlatego, tez w poradni psychologicznej podczas diagnozy przeprowadza się badania nie tylko pod kątem dyskalkulii, w o wiele szerszym aspekcie pozwalającym poznać zdolności ucznia pod kątem:• Poziomu rozwoju intelektualnego• Poziomu funkcji percepcyjno - motorycznych • Funkcjonowania emocjonalnego i społecznego • Określenie poziomu opanowania umiejętności szkolnych, czytania, pisania, liczenia • Zebrania informacji od rodziców i nauczycieli ( wywiady, kwestionariusze)• Obserwacji dziecka podczas pracy • Analizy wcześniejszej dokumentacji ( poprzednie badania ucznia, wyniki w nauce, analiza zeszytów ucznia )Efektem wieloetapowej i wnikliwej diagnozy jest opinia wydana przez Poradnie Psychologiczno - Pedagogiczną, opinia składa się z opisu wyników testów przeprowadzonych podczas badania a w szczególności dostosowań wymagań edukacyjnych dla konkretnego ucznia, nauczyciele dzięki temu mogą w odpowiedni sposób pracować z uczniem z dyskalkulią i pomagać mu na poszczególnych etapach edukacji. W opinii również przedstawione są inne formy wsparcia dla ucznia z specyficznymi trudnościami w nauce skierowane do rodziców. Najważniejszy przekaz dla rodzica to „Wspieraj!!!!! Najważniejsze, abyś wspierał swoje dziecko, które przez problemy czuje się zawstydzone.”
Możecie jednak wykorzystać edukację swoich dzieci jako okazję do przezwyciężenia własnych lęków. Mówienie o matematyce w kontekstach takich jak gotowanie, rzemiosło, podróże i zabawa z dziećmi to najlepszy sposób, aby uczynić tę dyscyplinę częścią ich codziennego życia. Dla nich matematyka stanie się tak samo normalna
Praca z dziećmi mającymi trudności w matematyce DLA UCZNIÓW KLASY CZWARTEJ , PIĄTEJ I SZÓSTEJ, realizujących program nauczania matematyki w oparciu o podręczniki „Matematyka z plusem” wyd. GWO I . Ogólne założenia programu:Program realizowany jest w ramach zajęć wyrównawczych w klasach IV, V, i VI. Powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach i umiejętnościach szkolnych z zakresu edukacji matematycznej. Program w pełni uwzględnia edukację matematyczną, zawartą w Podstawie Programowej określonej przez MENiS. W klasach w których uczę jest spora grupa uczniów bardzo słabych, którzy nie radzą sobie w toku zajęć edukacyjnych. W klasie czwartej, piątej i szóstej prowadziłam zajęcia wyrównawcze, które dały wymierne efekty, uczniowie przestali bać się matematyki, potrafią określić zagadnienie, którego nie rozumieją. Program ten jest wyjściem naprzeciw oczekiwaniom uczniów, ich rodziców i moim własnym. Program przygotowany został do realizacji w wymiarze 1 godziny tygodniowo. Dobór treści pozwala na częste odwoływanie się do życia codziennego, co ułatwia uczniowi pojmowanie niektórych zagadnień. II. Cele główny: - wyrównywanie braków edukacyjnych w zakresie realizowanych treści programowych, będących przyczyną trudności szkolnych, - zachęcenie ich do zwiększenia wysiłku w uczeniu się matematyki, kształtowanie pozytywnego nastawienia do podejmowania wysiłku intelektualnego,- wyrabianie własnej wartości,- zniwelowanie przykrych doświadczeń wiązanych z porażkami ucznia na lekcjach matematyki,- uświadomienie potrzeby znajomości pojęć matematycznych w codziennych sytuacjach życiowych,- rozwijanie umiejętności pracy w grupie . Cele szczegółowe:- nauczanie przedstawiania rozwiązań w sposób czytelny, - wyrabianie nawyków sprawdzania otrzymanych odpowiedzi i poprawiania błędów, - rozwijanie umiejętności matematycznych,- kształtowanie pojęć matematycznych,- rozbudzanie zainteresowań, wyrabianie własnej motywacji do (pracy) nauki,- ułatwienie dziecku umiejętności liczenia poprzez ćwiczenia koncentracji uwagi, rozwijanie spostrzegawczości, - kształtowanie umiejętności porównywania, segregowania i samokontroli,- rozwijanie umiejętności posługiwania się metodami matematycznymi w życiu codziennym,- wyrabianie poczucia własnej wartości,- motywowanie do przezwyciężania trudności w powinien: • operować podstawowymi pojęciami arytmetyki i geometrii, • posługiwać się symbolami matematycznymi do zapisywania treści zadań, • przeprowadzać proste rozumowania matematyczne, • postrzegać różnego rodzaju przedmioty jako figury przestrzenne, • rozwijać wyobraźnię przestrzenną, • umieć uzasadnić poprawność własnych spostrzeżeń i myśli, • zdobyć umiejętność dostrzegania związków między matematyką a otaczającym światem, • stosować matematykę do opisu prostych zjawisk przyrodniczych, • zdobyć umiejętności potrzebne w życiu codziennym, takie jak: o posługiwanie się dostępnymi urządzeniami usprawniającymi obliczenia, o sporządzanie rysunków pomocniczych ułatwiających rozwiązywanie problemów praktycznych, o korzystanie z podstawowych jednostek miary (długości, wagi, czasu i pola) o odczytywanie informacji z tabel, diagramów i wykresów, o planowanie wydatków i gospodarowanie pieniędzmi.• posiadać nawyk porządnej, starannej i systematycznej pracy, • być przygotowanym do dalszego kształcenia, do zdobywania i pogłębiania wiedzy oraz szukania informacji. III. Procedury osiągania procesie pomocy dzieciom z trudnościami w nauce bardzo ważną rolę odgrywają aktywność i chęć dziecka do pracy. Ważne jest aby dobrać odpowiednie techniki, metody i zasady pracy:1. Zasady pracy:- Indywidualizacja, czyli dobór środków i metod w zależności od potrzeb i możliwości uczniów (dla każdego inne)- Zasada stopniowania trudności (przechodzenie od prostych zajęć do złożonych).- Zasada systematyczności : indywidualizacja i modyfikacja wymagań dostosowanych do możliwości Metody:- rozwiązywanie zadań, - ćwiczenia,- gry i zabawy,3. Formy pracy:praca indywidualna, grupowa, Środki dydaktyczne:- podręczniki i zeszyty zadań dla klasy IV, V, VI „Matematyki z plusem”,- przyrządy geometryczne,- karty pracy,- figury geometryczne,- geoplany,- zegary,- termometry,- Przewidywane osiągnięcia wyniku realizacji programu uczeń klasy IV:- wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- zna cyfrowy i słowny zapis liczby wielocyfrowej,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- wśród figur geometrycznych potrafi wskazać prostokąt i kwadrat,,- wykonuje obliczenia pieniężne,- potrafi wykonać proste obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole prostokąta i kwadratu,- zna pojęcie skali,- potrafi wykonać dodawanie i odejmowanie ułamków zwykłych o jednakowych mianownikach oraz ułamków dziesiętnych,- potrafi pomnożyć ułamek zwykły przez liczbę naturalną,- potrafi pomnożyć i podzielić ułamki dziesiętne:W wyniku realizacji programu uczeń klasy V: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram. W wyniku realizacji programu uczeń klasy VI: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram,- potrafi rozwiązać proste równanie i nierówność,- potrafi zapisać i obliczyć wartości prostych wyrażeń algebraicznych,- potrafi stosować zdobytą wiedzę do rozwiązywania problemów z życia codziennego. V. Ewaluacja ewaluacji jest ustalenie stopnia opanowania osiągnięć ucznia. Przeprowadzona zostanie na początku roku szkolnego, po I semestrze oraz na zakończenie roku szkolnego. W procesie ewaluacji mogą zostać wykorzystane następujące narzędzia:- testy „na wejściu”, - sprawdziany zaczerpnięte z programu „ Lepsza szkoła”, - obserwacja pedagogiczna,- testy „na wyjściu”,- wyniki sprawdzianu po klasie VI,- rozmowy z dziećmi i RAMOWY ROZKŁAD MATERIAŁU 1 godzina tygodniowo. 36 godzin rocznie. KLASA 4 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. System zapisywania liczbGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 5 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby całkowiteGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 6 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby wymierneGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy3. Konstrukcje geometryczne ALGEBRA 1. Proste wyrażenia algebraiczne2. Równania i nierównościVII. Treści programu:Klasa IVARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Cechy podzielności liczb naturalnych• Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie ułamków zwykłych o jednakowych mianownikach• mnożenie ułamków zwykłych przez liczby naturalne• Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Rozwiązywanie prostych zadań tekstowych System zapisywania liczb• System dziesiątkowy• Znaki rzymskie• Jednostki długości i masy• Porównywanie liczb naturalnych wielocyfrowychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje i mierzenie kątów• Rysowanie prostokątów i kwadratów• Położenie prostych i odcinków Pola i obwody trójkątów i czworokątów • Obliczanie pól i obwodów prostokątów i kwadratów • Rozwiązywanie prostych zadań z treścią Prostopadłościany Własności prostopadłościanów• Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw prostopadłościanów • Rozpoznawanie i kreślenie siatek prostopadłościanów Pole powierzchni prostopadłościanu • Jednostki pola • Obliczanie pól powierzchni (proste przykłady)Klasa VARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Klasa VIARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Ewaluacja ma służyć uczniom, dyrekcji szkoły i nauczycielomrealizującym program. Wszystkie strony będą informowane o jej wynikachi będą uczestniczyły w wyciąganiu, formułowaniu wniosków i realizowaniuzaleceń na na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Konstrukcje geometryczne• Przenoszenie odcinków i kątów• Proste prostopadłe i równoległe• Symetralna odcinka, dwusieczna kata• Konstrukcja trójkątaWyrażenia algebraiczne • Zapisywanie i odczytywanie prostych wyrażeń algebraicznych • Obliczanie wartości liczbowych prostych wyrażeń algebraicznych • Redukcja wyrazów podobnych• Mnożenie i dzielenie sum algebraicznych przez liczbyRównania i nierówności• Zapisywanie równań i nierówności. Liczba spełniająca równanie lub nierówność• Rozwiązywanie równań i nierówności• Proste zadania tekstowe vAtSqN. 90 286 480 239 406 9 399 409 478